
总分 phase_1 phase_2 phase_3 phase_4 phase_5 phase_6 secret_phase pupil tr1vial

9 1 1 1 1 1 1 1 1 1

scoreboard 截图：

解题报告

phase_1

答案

https://www.youtube.com/watch?v=dQw4w9WgXcQ

思路

第一题很简单，读入用户输入的字符串，与 0x555555557180 处的字符串作比较，若不相同则调用 explode_bomb() ,炸弹
爆炸。

通过

(gdb) x/s 0x555555557180

得到答案为 https://www.youtube.com/watch?v=dQw4w9WgXcQ .

phase_2

答案

481702 736928 443338 675456

思路

转换为 C 代码如下：

int matA[2][3] = {

 {137, 583, 620},

 {427, 328, 636}

};

int matB[3][2] = {

 {426, 624},

 {640, 960},

 {81, 148}

};

long long phase_2(const char *input) {

 int a0,a1,a2,a3;

 int computed[4];

 if (sscanf(input, "%d %d %d %d", &a0, &a1, &a2, &a3) != 4)

 explode_bomb();

 int *pA = &matA[0][0];

 int *out = computed;

 for (int i = 0; i < 2; ++i) {

 int *pB = &matB[0][0];

 for (int col = 0; col < 2; ++col) {

 int sum = 0;

 for (int k = 0; k < 3; ++k)

 sum += pA[k] * pB[2*k];

 out[col] = sum;

 ++pB;

 }

 pA += 3;

 out += 2;

 }

 int inputs[4] = {a0, a1, a2, a3};

 for (int i = 0; i < 4; ++i) {

 if (inputs[i] != computed[i])

 explode_bomb();

 }

 return 0;

}

本题实现了一个矩阵乘法。通过命令 (gdb) info address matA.3 和命令 (gdb) info address matB.2 得到二维数组
matA 首地址位于地址 0x55555555a140 ，二维数组 matB 首地址位于地址 0x55555555a120 , 进而得到两个二维数组中存
储的具体值。

分析汇编代码， phase_2 核心逻辑由三重循环构成，分别对应矩阵的行、列及内积运算。外层循环控制矩阵 A 的行指针
 pA ，每次向后移动 3 个元素以处理下一行；中层循环控制矩阵 B 的列指针 pB ，在每行中依次计算当前行与各列的点
积；内层循环完成具体的乘加操作，将对应元素相乘后累加至寄存器中形成部分和。

通过矩阵乘法运算得到答案为 481702 736928 443338 675456 .

phase_3

答案

0 337

思路

转化为 C 代码如下:

int delta_1 = 494;

int phase_3(const char *input)

{

 int choice, value, expected;

 if (sscanf(input, "%d %d", &choice, &value) <= 1)

 explode_bomb();

 // 根据第一个输入 choice 计算期望值

 switch (choice) {

 case 0: expected = 831 - delta_1; break;

 case 1: expected = 730 - delta_1; break;

 case 2: expected = 804 - delta_1; break;

 case 3: expected = 711 - delta_1; break;

 case 4: expected = 503 - delta_1; break;

 case 5: expected = 589 - delta_1; break;

 case 6: expected = 319 - delta_1; break;

 case 7: expected = 795 - delta_1; break;

 default: explode_bomb();

 }

 // 检查第二个输入是否匹配期望值

 if (value < 0 || value != expected)

 explode_bomb();

 return 0;

}

本题的汇编实现了一个 switch-case 分支结构跳转，根据用户输入的第一个数字来决定跳转路径。通过分析分支条件可知，
每个 case 会用一个特定的数减去偏移量得到期望值，并在分支后将期望值与输入的第二个数作比较，若不相等则炸弹爆
炸。

通过 (gdb) x/d 0x55555555a110 得到偏移量 delta_1 = 494

选择输入第一个数字 0，分析汇编发现寄存器 %eax 中的数字为 0x33f ,故用 831-497 得到期望的输入 337 .故本阶段输
入 0 337 即可.

phase_4

答案

31 AC

思路

转成 C 代码如下：

int func4_1(int n) {

 int res = 0;

 if (n > 0) {

 res = n;

 if (n != 1)

 return 2 * func4_1(n-1) + 1;

 }

 return res;

}

void func4_2(int n, int index, char a, char b, char c, char *out)

{

 if (n == 1) {

 out[0] = a;

 out[1] = b;

 out[2] = '\0';

 } else {

 int temp = n - 1;

 int 8 = func4_1(next_n);

 if (8 >= index) {

 func4_2(temp, index, a, c, b, out);

 } else if (8 + 1 == index) {

 out[0] = a;

 out[1] = b;

 out[2] = '\0';

 } else {

 func4_2(temp, index - 8 - 1, c, b, a, out);

 }

 }

}

int phase_4(char *input)

{

 int num;

 char str[3];

 char res[3];

 if (sscanf(input, "%d %2s", &num, str) != 2)

 explode_bomb();

 if (num != func4_1(5))

 explode_bomb();

 if (string_length(str) != 2)

 explode_bomb();

 func4_2(5, 13, 'A', 'C', 'B', res);

 if (strings_not_equal(str, res))

 explode_bomb();

 return 0;

}

由 func4_1 代码计算得到 func4_1(5) == 31 ,故可以知道输入的第一个数字应为31.分析汇编代码，发现 func4_1 实现
的是求解汉诺塔问题中，移动盘子总数是 n 时第 index 步的盘子移动情况。
分析代码，将移动 n 个盘子分解成两个部分：先移动 n-1 个盘子，再移动最后一个盘子。

当索引 index 小于等于移动 n-1 个盘子的次数时，说明此时位于前半段，则递归地查询这一步的移动情况；
当索引为移动最大盘子的步骤时，最大盘由 a 移动到 b ，直接输出 ab ；

其余情况下，索引位于后半段，目标是把剩下的 n−1 个盘从 c 移动到 b ，递归地查询移动情况。

写一个脚本模拟一下，得到 n == 31, index == 13 输出 AC .

最初在做这一题的时候，我只看懂了简单的 func4_1 ，完全没有理解 func4_2 的递归逻辑。但我敏锐地注意到了

 phase_3 完成后的输出 Ancient monks moved sacred disks between poles... ，于是我立刻产生了一个大胆的猜测：
 phase_4 可能是汉诺塔。同时我发现 phase_4 调用的参数是 A C B ,且要求输入的第二个字符串长度为 2 ，于是我在几
乎完全没看懂 func4_2 的情况下尝试了 AB BA AC 等组合，在尝试到 AC 的时候成功解决了这一阶段。

phase_5

答案

``aeeo

思路

转成 C 代码：

int array_0[] = {2, 10, 6, 1, 12, 16, 9, 3, 4, 7, 14, 5, 11, 8, 15, 13};

char *phase_5(char *a1, char *a2)

{

 char *ptr;

 char *end;

 int sum = 0;

 if (string_length(a1) != 6) {

 explode_bomb();

 }

 ptr = a1;

 end = a1 + 6;

 while (ptr != end) {

 char ch = *ptr;

 int index = ch & 0xF;

 sum += array_0[index];

 ++ptr;

 }

 if (sum != 59) {

 explode_bomb();

 }

 return ptr;

}

本阶段使用一个指针遍历输入的每一个字符，计算其 ASCII 码的低四位作为索引，并通过索引在给定数组中取值，将每次
遍历取出的值累加，将最终结果与 59 作比较，若不相等则引爆炸弹。

使用脚本：

array = [2, 10, 6, 1, 12, 16, 9, 3,

 4, 7, 14, 5, 11, 8, 15, 13]

target = 0x3b

L = 6

res = []

def dfs(pos, cur_sum, path):

 if pos == L:

 if cur_sum == target:

 res.append(path.copy())

 return

 for idx in range(16):

 s = cur_sum + array[idx]

 dfs(pos + 1, s, path + [idx])

dfs(0, 0, [])

if res:

 for comb in res[:10]:

 s = ''.join(chr((0x6 << 4) | idx) for idx in comb)

 print(s, comb)

模拟得到结果，输入 ``aeeo 通过此阶段。

phase_6

答案

5 3 2 6 4 1

思路

转成 C 代码：

typedef struct Node {

 int value;

 struct Node *next;

} Node;

void phase_6(char *input)

{

 int nums[6];

 Node *nodes[6];

 int i, j;

 read_six_numbers(input, nums);

 for (i = 0; i < 6; ++i) {

 if (nums[i] < 1 || nums[i] > 6)

 explode_bomb(input, nums);

 for (j = i + 1; j < 6; ++j) {

 if (nums[i] == nums[j])

 explode_bomb(input, nums);

 }

 }

 // 根据输入数字选择链表节点

 for (i = 0; i < 6; ++i) {

 Node *cur = &node1;

 for (j = 1; j < nums[i]; ++j)

 cur = cur->next;

 nodes[i] = cur;

 }

 // 重建链表顺序

 for (i = 0; i < 5; ++i)

 nodes[i]->next = nodes[i + 1];

 nodes[5]->next = NULL;

 // 检查链表是否递增

 Node *cur = nodes[0];

 for (i = 0; i < 5; ++i) {

 if (cur->value > cur->next->value)

 explode_bomb(input, NULL);

 cur = cur->next;

 }

}

本题通过读入六个数字作为索引，根据读入数字顺序重新连接节点组成新链表，然后检验新链表节点的值是否升序排列，若

不是则引爆炸弹。

访问内存得到六个节点为 node1:717 node2:251 node3:128 node4:711 node5:106 node6:257 ，按对应值升序排列索引得
到答案为 5 3 2 6 4 1 .

secret_phase

答案

33022

思路

转 C 代码如下：

int dx[8] = {-2, -1, 1, 2, 2, 1, -1, -2};

int dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};

int adj_x[8] = {-1, 0, 0, 1, 1, 0, 0, -1};

int adj_y[8] = {0, 1, 1, 0, 0, -1, -1, 0};

// 棋盘

int board[8][8] = {

 {0,0,1,0,0,1,0,0},

 {0,0,0,1,0,0,0,1},

 {1,0,1,0,0,1,0,0},

 {1,0,0,0,0,0,0,0},

 {0,1,0,0,1,0,1,0},

 {1,0,0,1,1,0,0,0},

 {0,0,0,0,0,1,0,1},

 {0,1,0,0,0,0,0,0},

};

int func7(int x, int y, int step, int path[20])

{

 if (step > 19) return 0;

 int val = path[step];

 if (val == 0) return 1;

 int idx = val & 7;

 int target_x = x + dx[idx];

 int target_y = y + dy[idx];

 if (target_x < 0 || target_x >= 8 || target_y < 0 || target_y >= 8)

 return 0;

 int aux_x = x + adj_x[idx];

 int aux_y = y + adj_y[idx];

 if (aux_x >= 0 && aux_x < 8 && aux_y >= 0 && aux_y < 8) {

 if (board[aux_x][aux_y] == 1) return 0;

 }

 if (board[target_x][target_y] == 1) return 0;

 return func7(target_x, target_y, step + 1, path);

}

int secret_phase()

{

 int line;

 puts("Wait! Is there a horse?");

 line = read_line();

 if ((int)string_length(line) > 20)

 explode_bomb();

 if (!(unsigned int)func7(line, 0, 0, 0))

 explode_bomb();

 puts("Wow! The horse gallops to victory! You are a master!");

 return phase_defused();

}

该阶段核心是一个递归路径验证函数 func7 ，结合一个固定的 8×8 棋盘 board，实现了类似象棋中“马”的行走路径检测的
逻辑。

 func7 递归检查路径是否合法：

若 step > 19 ，说明已超出最大允许步数，返回 0 （失败）。
取当前步的方向 val = path[step] .若为 0 ，说明路径结束，返回 1 （成功）。
计算目标位置 (target_x, target_y) 。若越界或被障碍阻挡，则失败。
检查位置 (aux_x, aux_y) 是否有障碍。
若无阻碍，则递归进入下一步。

整个递归在任一步失败都会返回 0 ，走完整条路径则返回 1 。

在 secret_phase 中，当输入路径字符串能引导“马”在棋盘上完成一条合法的路径(从 (0, 0) 到 (4, 7))序列时，炸弹被
拆除。

我使用了一个脚本搜索解法，得到方向 33022 是合法的。

反馈/收获/感悟/总结

这个 lab 第一个让我感到开心的地方在于我成功进行了炸弹安全化，或者更确切地说，阻止了爆炸的炸弹向服务器发送通
知。我通过在 call 1deb <send_msg> 这一句处设置断点，然后直接跳到 call 1190 <exit@plt> 这一句处，完整地
跳过了 send_msg 函数的执行，从而使得服务器无从知道我的炸弹爆炸了。同时为了万无一失，我通过在进入
 phase_defused 函数的第一句话处设置断点，然后直接跳到 ret 处，避免了同服务器的通信.在第一次忐忑不安地在输入
 (gdb) run 后，发现的确没有将爆炸信息发送到服务器，我感到非常快乐(当然，在两分钟后当我发现 phase_1 的答案是
 Never Gonna Give You Up 的 YouTube 视频链接以后我更快乐了)。

整个 lab 的 7 个阶段做得非常爽，但后面两个阶段对我来说感觉难度还是太大，我在求助 AI 与使用 IDA 的情况下也还
是花了好几个小时。在最后的 secret_phase 破解之后， 那种成就感绝对是无与伦比的。

在拆弹过程中，我加深了对汇编语言的理解，更好地掌握了程序的控制结构，对程序的底层有了一个初步的理解。

总之，体验很棒！感谢助教师兄师姐们的付出，赞美 bomblab !

参考的重要资料

CSAPP | Lab2-Bomb Lab 深入解析

 CSAPP 原版 BombLab 解析，帮助我了解了完成这个 Lab 的一些基础知识

汇编语言入门教程

汇编语言入门，虽然是 Intel 语法

更适合北大宝宝体质的 Bomb Lab 踩坑记

https://zhuanlan.zhihu.com/p/472178808
https://www.ruanyifeng.com/blog/2018/01/assembly-language-primer.html
https://arthals.ink/blog/bomb-lab

对我帮助最大，特别是其中跳过 send_msg 函数的部分

